Reporting and analytics tools

Google Data Studio: Data Visualization and Analysis with Interactive Dashboards

Google Data Studio: Data visualization tool. Create interactive, custom reports. Transform raw data into actionable insights.

TRY NOW Looker Studio (Google Data Studio) ★★★★☆
4.4

/5 | 50 reviews ⭐️

hero img blog

🟢 Free Version

🟢 Free Trial

❌ Free Version

💵 Start from  

0

💲

/mo

🗺 HQ :United States

📆 Last Update :

06/2025

📊 Key Takeaways

Looker Studio, anciennement Google Data Studio, est un outil gratuit de BI qui transforme vos données brutes en tableaux de bord interactifs et rapports personnalisés. Avec plus de 2 millions d’utilisateurs dans le monde (Google Cloud, 2025), il est plébiscité par les marketeurs, analystes, et PME pour sa simplicité et sa puissance.

Le contenu des rapports générés avec Looker Studio peut être adapté en fonction des besoins spécifiques de chaque utilisateur ou équipe.

Qu’est-ce que Looker Studio (Google Data Studio) ?

Looker Studio est une plateforme cloud gratuite de visualisation de données développée par Google. Lancée en 2016 sous le nom Google Data Studio, elle a été renommée en 2022 suite à l’acquisition de Looker par Google.

Elle permet de connecter des sources de données (Google Analytics, Google Ads, Sheets, etc.), de créer des dashboards interactifs, et de partager des rapports dynamiques avec votre équipe ou vos clients. Chaque rapport ou dashboard est présenté sur une page dédiée, ce qui facilite la consultation et le partage des informations.

Son interface drag-and-drop rend la création de visuels accessible, même sans compétences techniques.

À quoi sert Looker Studio ?

Looker Studio sert à transformer des données complexes en visualisations claires pour faciliter les décisions. Ses usages incluent :

  • Analyse marketing : Suivi des KPI comme le trafic web, les conversions, ou le ROI.
  • Reporting client : Création de rapports esthétiques pour présenter les résultats.
  • Collaboration : Partage en temps réel avec des équipes ou clients.
  • Data storytelling : Présentation des données sous forme de graphiques (barres, secteurs, courbes, cartes) pour raconter une histoire.

Comment fonctionne Looker Studio ?

Looker Studio repose sur trois éléments clés :

  1. Connecteurs de données : Intégrez des sources comme Google Analytics, Google Sheets, BigQuery, ou plus de 800 connecteurs tiers (ex. : Meta Ads, Salesforce).
  2. Visualisations : Créez des graphiques (lignes, barres, tableaux croisés dynamiques) avec des dimensions (ex. : date, campagne) et métriques (ex. : clics, ventes). Il est également possible d’ajouter des interactions, comme des filtres, pour permettre aux utilisateurs de manipuler les données affichées et de personnaliser l’analyse selon leurs besoins.
  3. Partage : Collaborez en temps réel, partagez via liens, ou intégrez les rapports sur des sites web.

Alternatives à Looker Studio

Solution 🚀 Note ⭐ Prix 💶 Points forts 👍 Points faibles 👎
Looker Studio 4,3/5 ⭐⭐⭐⭐☆ Gratuit
  • 🔹 Connecteurs Google natifs (Analytics 360, BigQuery)
  • 🔹 Rapports illimités (jusqu’à 50 dimensions)
  • 🔹 Installation sans frais
  • 🔹 Fonctions BI avancées limitées
  • 🔹 Dépendance à l’écosystème Google
  • 🔹 Pas d’alertes automatiques
Power BI 4,6/5 ⭐⭐⭐⭐☆ 15 €/utilisateur/mois
  • 🔹 Analyses avancées (>200 fonctions DAX)
  • 🔹 Intégration Microsoft complète (Excel, Azure)
  • 🔹 Visualisations interactives (>350 types)
  • 🔹 Courbe d’apprentissage élevée
  • 🔹 Licence Pro obligatoire (10 Go stockage inclus)
  • 🔹 Dépendance à Azure (coûts d’infrastructure)
Tableau 4,5/5 ⭐⭐⭐⭐☆ 75 €/utilisateur/mois
  • 🔹 Traitement Big Data (Hadoop, Spark)
  • 🔹 Tableau Server & Prep
  • 🔹 Explain Data et storytelling
  • 🔹 Très onéreux (TCO > 100 000 €/an pour 10 utilisateurs)
  • 🔹 Installation serveur complexe
  • 🔹 Ressources systèmes importantes (16 Go RAM min.)
Metabase 4,2/5 ⭐⭐⭐⭐☆ Gratuit self-hosted
  • 🔹 Open source (licence MIT)
  • 🔹 Interface Q&A en langage simple
  • 🔹 Aucun coût de licence
  • 🔹 Fonctions analytiques limitées
  • 🔹 Support communautaire uniquement
  • 🔹 Personnalisation restreinte
Supermetrics 4,4/5 ⭐⭐⭐⭐☆ À partir de 39 €/mois
  • 🔹 +50 connecteurs marketing (FB Ads, GA, LinkedIn Ads)
  • 🔹 Intégration Data Studio & Sheets (actualisation chaque heure)
  • 🔹 Automatisation de rapports (planification quotidienne)
  • 🔹 Coût par source de données (+ 10 $/source/mois)
  • 🔹 Dépendance à la plateforme cible
  • 🔹 Pas de visualisation native

Comment créer son premier rapport ou dashboard ?

Pour créer un rapport efficace avec le mot-clé "keyword", il est possible d’intégrer une liste d’éléments ou de données afin d’organiser et de présenter clairement les informations essentielles.

Lors de l’ajout de sources de données, vous pouvez connecter un tableur, tel que Google Sheets ou Excel, pour importer facilement vos données dans l’outil. Cette étape permet d’alimenter votre rapport ou dashboard avec des données actualisées et structurées.

Étape 1 : Connexion et configuration

  1. Accédez à lookerstudio.google.com avec un compte Google.
  2. Cliquez sur « Créer » > « Rapport » ou sélectionnez un modèle dans la Galerie de templates.
  3. Ajoutez une source de données via « Ajouter des données » (ex. : Google Analytics, Google Sheets).

Selon les besoins de votre projet, il est possible d’ajouter plusieurs fois différentes sources de données afin de connecter toutes les informations nécessaires.

Étape 2 : Création du dashboard

  1. Utilisez l’éditeur drag-and-drop pour ajouter des graphiques (ex. : barres, lignes, jauges).
  2. Sélectionnez vos dimensions (ex. : mois) et métriques (ex. : sessions).
  3. Personnalisez avec des filtres interactifs (dates, catégories) et des thèmes (couleurs, polices).

Vous pouvez également insérer des zones de texte pour ajouter des explications, des légendes ou des instructions dans votre dashboard.

Étape 3 : Partage

  1. Cliquez sur « Partager » pour inviter des collaborateurs (lecture ou édition).
  2. Exportez en PDF ou intégrez le rapport sur un site via un lien.

Pourquoi choisir Looker Studio ?

Critère Looker Studio Autres outils (Tableau, Power BI)
Prix Gratuit
Pro à 9 $/utilisateur/mois
★★★★★
Power BI Pro : 9,99 $/mois
Tableau : ~70 $/mois
★★☆☆☆
Facilité Interface intuitive, no-code
démarrage immédiat
★★★★★
Courbe d’apprentissage longue
nécessite formation avancée
★★★☆☆
Connecteurs 150+ natifs et 800+ partenaires
intégration native Google
★★★★☆
1 000+ natifs et tiers
large écosystème d’intégrations
★★★★★
Collaboration Mise à jour en temps réel
intégration Google Workspace
★★★★★
Partage possible sous licence serveur
version cloud hétérogène
★★☆☆☆

Avantages :

  • Gratuité : Version de base accessible à tous.
  • Intégration Google : Connexion native avec GA4, Google Ads, Sheets.
  • Personnalisation : Thèmes, filtres, et tableaux de bord personnalisables.
  • Collaboration : Partage facile, comme Google Docs.
  • Analyse des performances : Looker Studio facilite l’analyse des performances marketing ou commerciales grâce à ses visualisations avancées.

Limites : Moins adapté aux visualisations avancées ou aux très gros volumes de données (résolu avec Looker Studio Pro).

Connecteurs de données disponibles

Looker Studio supporte plus de 800 connecteurs, dont :

  • Google : Google Analytics, Google Ads, Search Console, YouTube, Sheets, BigQuery.
  • Tiers : Meta Ads, LinkedIn Ads, Salesforce, HubSpot, MySQL, via partenaires comme Supermetrics ou Coupler.io.
  • Personnalisés : Importation de CSV ou bases de données SQL.

Tarifs de Looker Studio

Plan 📦 Prix 💰 Essai ⏳ Fonctionnalités ✨
Looker Studio Gratuit
  • Tableaux de bord interactifs
  • Connecteurs gratuits (Google Analytics, Sheets, BigQuery…)
  • Partage et collaboration en temps réel
  • Personnalisation des rapports
Looker Studio Pro 9 $/utilisateur/mois 30 jours gratuits
  • Espaces d’équipe et gestion centralisée
  • Livraison automatisée de rapports (jusqu’à 20 plannings)
  • Liens de rapport personnels
  • Application mobile + assistance prioritaire
  • Accès à Gemini AI pour générer des champs calculés

La version de base est 100 % gratuite, avec accès à toutes les fonctionnalités essentielles. Looker Studio Pro (9 $/utilisateur/mois) offre des options avancées pour les entreprises : gestion d’équipe, support Google Cloud, et connexions à grande échelle.

Conclusion

En 2025, Looker Studio (ex-Google Data Studio) est l’outil idéal pour les marketeurs, analystes, et PME souhaitant visualiser leurs données sans se ruiner. Avec sa gratuité, ses connecteurs variés, et son interface no-code, il simplifie la création de tableaux de bord interactifs pour le marketing, l’e-commerce, ou le SEO. Commencez par un modèle gratuit sur lookerstudio.google.com, connectez vos données, et partagez vos insights en quelques clics.

Discover the EXCLUSIVE deal by clicking here
arrow CTA right

What is Google Data Studio?

Google Data Studio is one of BI tools the most popular on the market, created by Google. It aims at simplicity, and therefore its capabilities are quite limited. Data Studio seems nice on the surface, but in fact, its functions are fragmented and unsuccessful.

Google Data Studio works best if the organization was already using Google's BigQuery (among other Google tools) for data warehousing and had a workflow for cleaning and transforming data.

There is also a summary evaluation table at the end of the post that nicely summarizes our evaluation of Data Studio.

Who is Data Studio for?

Based on our evaluation of Google Data Studio, the tool seems to target a set of semi-technical users who work with numbers and are very familiar with Excel. They may even know a bit of a scripting language (Python, JS), but are not technical enough to work on data infrastructure or to create comprehensive reports from scratch, or to develop complex analyses that require SQL acrobatics.

They're basically what people call “business analysts.” They understand business problems well, can speak business language and a bit of data language, and need a tool to gather and present nice reports to customers or internal stakeholders.

Features

Google Data Studio has 4 important concepts: Dataset, Connector, Data Source, Report.

gds-concepts

Google Data Studio concepts and how they relate

The data set is the “physical” layer that underlies everything (and stores the data), while the data source is the “logical” layer with additional properties and features. A connector is the “pipe” that connects these two layers.

A data set can be much more than a simple table or an Excel file. A few examples:

  • Google Analytics report views
  • Google Sheets spreadsheets, CSV files uploaded to Drive
  • MySQL, PostgreSQL databases
  • etc...

The data source is created on top of the data set with additional features:

  • Shareable: Although only you have access to your underlying data set, the data source can be shared in the same way as any other Google resource (with owner, edit, and view permissions...).
  • Configurable: you can change field names, the type of aggregation, create calculated fields, deactivate fields...

Connector: Google Data Studio doesn't import your data - it uses a connector to get access to your real underlying data. In addition to the official Google connectors, there are partner connectors and open-source connectors that allow access to data from other platforms such as Facebook, GitHub, or Twitter.

Although it has a large number of connectors that make it easy to connect data, the connectors provided by the community are not always stable because they are not always well maintained.

gds-connectors

Google Data Studio supports a large number of connectors, some provided by Google, some provided by partners and communities.

Finally, a report is the final, visual presentation of data from different data sources. We'll talk more about a report in the section below.

Let's take a simple example where you want to analyze sales transaction data in an Excel file that you store in GDrive.

  • You start Google Data Studio, and use their Google Drive connector to connect to Google Drive (dataset).
  • You then create a data source based on that particular Excel file in Google Drive. You then add a custom formula (calculate gross margin based on sales price and cost), or remove unnecessary fields/data from the data source.
  • Then, you create a report with multiple visualizations to show different aspects of your data in the data source. You can share this report with various stakeholders. It's done!

1. Reports

Google Data Studio is built around the concept of “report.” A report in Google Data Studio bears a striking resemblance to Google Drawing or Google Slides. Google Data Studio doesn't have the concept of a dashboard.

Compared to other BI tools, where reports generally consist of a graph or table, and where the dashboard consists of several graphs, with a layout concept based on a very fixed grid, we think this is one of the nicest aspects of Google Data Studio.

On the editing side, the tool offers a very interactive drag-and-drop interface, where the user can freely resize and align graphics. This gives designers more freedom, but may irritate those who only want fast, pleasant graphics that are arranged automatically.

This approach aligns well with semi-technical business analysts who are used to beautifying Powerpoint slides.

Data filtering in Google Data Studio

Data filtering in Google Data Studio is fragmented. There are various types of filters in Google Data Studio: Date Range, Filter Control, Data Control, Map Specific Filters.

A filter is linked to a data source and takes control of certain fields/dimensions in that data source.

When the filter value is changed, that change affects the data source, generating new queries that are sent to the underlying dataset. The results are stored in the query cache and then the charts are updated accordingly.

gds-filter-mechanism

Data modeling

In a data source, we can add a new field and specify its type. Categorical fields such as text, date, boolean... will be classified as Dimension, while numbers are classified as Metrics. Each metric is linked to a default aggregation method.

Formula syntax is a simplified version of standard BigQuery SQL syntax. The supported functions meet most of the popular use cases, but they fall a bit short in the edge cases where you want a more complicated formula:

In short, it seems easy at first to get used to this feature, but it has a few quirks. In addition, it does not currently allow you to define relationships (joins) between different data sources, which is very limiting as you will read below.

Exploration

Google Data Studio recently introduced the Explorer feature (still in LABS/beta mode) that allows the user to explore a single data source in a simplified version of Data Studio. This is probably a way for Google to meet the needs of some users for a fast and dirty data mining interface.

However, we believe that with a limited data abstraction layer (with no relationships between data sources), the development of this functionality will be limited, unless the underlying modeling layer is complex enough.

Data combination

Combining data from multiple sources is one of the most important characteristics of a BI tool. Below we look at how Google Data Studio can help you do that.

Google Data Studio introduced the Data Blending feature that allows users to combine multiple data sources into one. This feature is both similar to and different from an SQL JOIN. As Google has defined it, it is a LEFT JOIN and Google Data Studio allows up to 5 sources to be combined in a single operation.

In our opinion, this feature is underdeveloped and is only useful for a small number of specific use cases.

gds-blend-data

Let's look at the following different joining scenarios:

  • Blending two data sources
  • Blend 3 or more data sources with the same join keys
  • Mix of 3 or more data sources with different join keys

Mixed data sources are called “data views” and are only available in the report that is created, which means they cannot be shared or reused. In other words, the idea of mixing data seems great, but the execution is not up to scratch. If further developed, Data Blending will be a great companion to Explorer mode.

Access control and data sharing

Reports and data sources have the same sharing, permission, and ownership mechanism as a document on Google Drive, but without a folder structure. When created, these objects are saved as an “unknown file” in the main Google Drive folder, which is quite messy.

Sharing data is easy for individuals, but for groups, Google Data Studio builds on Google Groups, which adds friction to the experience. In fact, the mechanism is quite restrictive for large organizations that need complex authorization control.

gds-access-control

For example, when a user leaves an organization, the ownership transfer process in Data Studio is currently clumsy. Sometimes a user's Gmail account is deactivated before they can transfer ownership of their reports and data sources, causing hundreds of data sources to be deactivated that need to be reconnected to the data set. This process is quite long, tedious, and sometimes unmanageable.

Integrations

Google Data Studio integrates well with other products in the Google ecosystem, mainly database products (BigQuery, Spanner, Cloud SQL...), ad and campaign management products (Google Analytics, Adwords, Youtube Analytics...) and Google Sheets.

  • BigQuery : Google Data Studio can easily connect to BigQuery tables and views, and it also supports custom SQL to help users optimize dashboard performance and query costs. Each table, view, and custom SQL acts like a data set.
  • Google Sheets : Each sheet in a Google spreadsheet is a separate data set, which means that each data source will only connect to one sheet in a spreadsheet. The data on the sheet must be in table form for Google Data Studio to work properly.
  • Apps (GA, YouTube, Google Ads) : Google Data Studio has official connectors to Google Analytics, YouTube Analytics and others. By connecting to these sources, Google Data Studio automatically recognizes the available dimensions and metrics. There are also Google Data Studio templates that are designed to work instantly with Google Ads or YouTube Analytics, and there's even a dedicated filter to control GA data sources in Google Data Studio. However, the data obtained through these official connectors is only aggregated (and possibly sampled) data.
  • Working with a non-Google stack : As noted above, in addition to the official connectors to Google products, Google Data Studio offers hundreds of connectors written by Google partners, as well as a few open source connectors. These connectors help you explore public (or sometimes private) data from other websites, of which social media and ad platform connectors represent the largest portion.

Pricing

For now, Google Data Studio is offered free of charge by Google as part of its Google Cloud Platform offer.

It is likely that Google will start charging for this service (or a premium version of it) in the future, similar to Google Analytics (with Google Analytics 360).

Final Verdict

Overall, we think that Google Data Studio is a decent BI tool, ideal for reports that have a simple data structure but have complex formatting requirements (i.e., the data is not complex, but end users need sophisticated reports).

A few key points are highlighted below:

  • Designed for semi-technical users, i.e. business analysts.
  • Multiple data connectors that support numerous integrations, but no guarantee of connectors contributed by the community.
  • Their view of relationships with a PowerPoint-like experience is unique and stands out from other tools we know.
  • Their data modeling is weak and very basic, making them unable to perform complicated operations and self-service reports. There is no exploration and the filtering capabilities are standard.
  • Data blending has potential, but it is still very limited and it is difficult for users to manipulate and join data (which generally takes 80% of the time).
  • Designed to complement the Google Cloud stack and works well with it. Recommended only if you already use (or decide to use) Google and GCP services.
TRANSPARENCY ON PARTNERSHIPS
We carefully choose the software, platforms, and services we recommend based on their quality and reliability. Our team tests and approves them, regardless of any business agreements.If you make a purchase or sign up through our partner links, we may earn a commission. This doesn’t cost you extra and helps keep our content free.

You might also like...

Check out more reviews to learn something new. Explore a variety of tools and resources that could be helpful and give you fresh ideas.